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Cyclic states, Berry phases and the Schrodinger operator 

Alla N Seleznyova 
Department of Physics, Victoria University of Wellington, PO Box 600, Wellington, 
New Zealand 

Received 13 April 1992. in final form 8 September 1992 

Abstract. An evolution of a quantum mechanical system under a non-adiabatic external 
perturbation at the time interval [O, TI is considered. It is shown that all the cyclic states 
of the system, lY(7)) =e'"lY(O)). are determined by the eigenvalues E (quasi-energies) 
and associated eigenvectors Ips(t)) of the Schradinger operator SJt) = H(t)-ifi(a/at) 
acting on some Hilbert space. The set of linearly independent cyclic (quasi-energy) states 
possess some properties similar to the properties of the stationary states of a closed system. 
The Beny phases of the states associated with eigenvectors of the discrete spectrum of 
SJt), which are single-valued functions of w = 211/ T, are supplied by the partial derivatives 
of the corresponding eigenvalues (quasi-energies) with respect to w. The approach 
developed is illustrated by several applications to time-dependent systems: the system 
under an adiabatic perturbation, the forced harmonic oscillator, and the two4evel system. 
Even in the case of a system with atime-independent Hamiltonian there exist non-stationary 
quasi-energy states that have non-trivial Berry phases (@/2m not an integer). The criterion 
of existence of such states is formulated in terms of the energies of the system, and the 
corresponding expression forthe Berry phases is obtained. Some examples of non-stationary 
cyclic states of closed systems, including the coherent states of a force-free oscillator and 
the Wannier states of electrons in the parabolic band, are considered. 

1. Introduction 

This paper is based on the early works [1-5] on the quasi-energy approach to time- 
dependent systems. It is shown that although the notions of the 'quasi-energy' and the 
'quasi-energy state' were originally introduced for systems with T-periodic 
Hamiltonians, they can be applied to the description of any system considered in the 
time interval [0, TI. 

The language of the quasi-energy approach is well suited for the description of 
cyclic states and Berry phases of non-adiabatic quantum systems. The results of 
exploiting this language are presented below. They are grouped into sections as follows. 

It is shown in section 2 that the problem of determining all possible cyclic states 
Yn(T)=Yn(0) ei$ of a quantum system with an arbitrary Hamiltonian H(t )  can be 
reduced to an eigenvalue problem for the Schrodinger operator S,( t )  = H (  t )  - ih(d/at) 
on some Hilbert space X. Any cyclic state can be presented in the form 

where E is an eigenvalue and Icp.(f)) is the corresponding eigenvector of SJf). The 
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expression for the evolution operator of the system in terms of the cyclic states is 
obtained for the case where {lqp,(t))} is complete in Z. 

The connection is established in section 3 between the cyclic states of a system 
considered in the time interval [0, T] and the quasi-energy states of a T-periodic 
system, closely related to the former. It is shown that the quasi-energy approach [ 1-51 
can be applied to the description of the system in the time interval [0, TI, even if 
H (  T) # H(0). 

In section 4 Berry phases and dynamical phases of the system are expressed in 
terms of the inner product of the Hilbert space 2. It is shown that the Berry phases 
of the states associated with eigenvectors of the discrete spectrum of S( t ) ,  which are 
single-valued functions of w = 2 r / T  in some interval, are supplied by the partial 
derivatives of the corresponding eigenvalues (quasi-energies) with respect to w. It is 
shown that some linear combinations of the quasi-energy states become cyclic for 
certain isolated values of the frequency w of the external perturbation (multiphoton 
resonance). The Berry phases for this case are also considered. 

An expression for the quasi-energy of the quasi-energy state corresponding to a 
cyclic adiabatic evolution of a quantum system is obtained in section 5. In the adiabatic 
approximation E ( @ )  is a linear function of o with a gradient -ph/27r, where p is the 
corresponding Berry phase. 

In section 6 the two-level system is considered. It is shown that in the rotating-wave 
approximation the shift (with respect to the unperturbed value) of a quasi-energy is 
proportional to the corresponding Berry phase. Since the quasi-energies determine the 
spectral characteristics of the system, this shift can be measured. It is shown that in 
the case of the multiphoton resonance all states of the system are cyclic and the 
corresponding Berry phases are calculated. 

It is shown in section I that the complete set of quasi-energy states of a forced 
harmonic oscillator can be obtained from the set of stationary states of a force-free 
oscillator by means of the unitary transformation which belongs to a representation 
of the Heisenberg-Weyl group W,. The set of all cyclic generalized coherent states of 
the oscillator coincides with the set of the quasi-energy states, if w o #  Iw ( w  is the 
frequency of the external perturbation, wo is the resonance frequency of the oscillator). 
The Berry phases of bound cyclic states are calculated. The behaviour of the oscillator 
under a perturbation applied at 0 =z t S T is considered. 

In section 8 the system with a time-independent Hamiltonian is considered. The 
criterion of existence of states with non-trivial Berry phases (p/Zr is non-integer) is 
formulated in terms of the energies of the system, and the corresponding expression 
for the Berry phases is obtained. Some examples of non-stationary cyclic states, 
including the coherent states of a force-free oscillator and the Wannier states of 
electrons in the parabolic band, are considered. 

2. Cyclic states and the Schrodioger operator 

Let us consider the evolution of a quantum system in the time interval [0, TI. Let H( t )  
be the Hamiltonian of the system acting on a Hilbert space B. States of the system 
are described by vector-valued functions IY): [0, T]+B. The set of functions 
L*([O, TI; B), which satisfy the condition lor ( g ( d  Ig(r)) dr <@ 
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is a Hilbert space with the inner product 

The Schrcdinger equation may be written in the form 

S ( t ) l W t ) ) =  0 (2.2) 

where 

a 
at 

S ( t )  = H ( t )  -ih - 

is the Schrodinger operator [ 3 ]  acting on L'([O, TI; 91). 
Let us consider the case where the system returns to its original state at the moment 

T. The wavevector l q ( t ) ) ,  corresponding to such a cyclic evolution, satisfies the 
condition 

I * ( T ) ) =  ei61q(o)) (2.3) 

where q5 is some real number. It was first pointed out by Zel'dovich [ 11 that a function 
satisfying the condition (2.3) may be presented in the form 

IP,(t)) = exp(-ist/fi)ldt)) (2.4) 

where 

~ = - + i i / T  (2.5) 

and 

I(o.(T))= I d O ) ) .  (2.6) 

Although the form (2.4) was stated for the systems with T-periodic Hamiltonians it is 
easy to see that a wavevector of an arbitrary system at the time interval [0, TI may be 
presented in the form (2.4) provided this vector satisfies (2.3). Note that 

WAf) IW,(t)) =(cDe(t)l d t ) ) .  (2.7) 

It follows from (2.4), (2.6) and (2.7) that lqe(t))c%',  where %' is the subspace of 
L2([0,  TI; 4e) formed by the functions Ig): [0, TI + 91 such that [g( T ) )  = Ig(0)). 

The substitution of (2.4) into (2.2) gives the equation for Iv=(f)), 
S ( f ) l V c ( f ) ) =  4df ) ) .  (2.8) 

The equation (2.8) with the boundary condition (2.6) is an eigenvalue problem for the 
Schrodinger operator S(f). Therefore, Ip.(f)) is an eigenvector of S ( t )  with the real 
eigenvalue E.  Note that S ( t )  is not Hermitian on L*([O, TI; a), consequently, it may 
have complex eigenvalues. Since all Ips( t ) ) ~  %'this complication can be removed by 
restricting S ( t )  to the space X. This restriction, denoted by Sq(t), is a Hermitian 
operator and its eigenvalues are real. 

Thus, it is shown that the problem of finding all cyclic solutions of the Schrodinger 
equation, which belong to L2([0,  71; a), may be reduced to the eigenvalue problem 
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on X. All the possible values of the phase + are determined by the eigenvalue E by 
means of (2.5). The corresponding cyclic wavevectors are given by (2.4). The correspon- 
dence between the solutions of the eigenvalue problem (2.9) and cyclic states is not, 
however, one-to-one. Indeed, if (E ,  Iqp,(t))) is a solution of the eigenvalue problem 
(2.9), then for any integer p 

E ) =  e +phw I d f ) ) =  e ' w t t d t ) )  (2.10) 

is also a solution. The corresponding cyclic solutions of the Schrodinger equation are, 
however, identical: 

In other words, all the solutions { ( E ' ,  lqe.(t)))] given by (2.10) are physically equivalent 
and correspond to the state IY?(t)). Any solution from the equivalence class 
{ ( ~ ' , [ q J f ) ) ) }  may be chosen to represent the state lYe(t)). If the dimension of the 
eigensubspace belonging to the eigenvalue e is more than one, a set of the linear 
independent eigenvectors {lq,*)} will be chosen in such a way that 

( ( 'P* . l (Pm.) )r=~xm.  

The number of equivalence classes corresponding to the eigenvalue E is equal to the 
dimension of the eigensubspace associated with E. 

The eigenvectors of Sq(t) will be labelled by two indexes j and p ,  The index j will 
label different equivalence classes of eigenvectors, the index p will label eigenvectors 
inside each class in such a way that 

lqsjp(f))= e'"lqp,,(t)) (2.11) 

where Ip,( t ) )  is one of the eigenvectors of the class number j and E, is the eigenvalue 
associated with this eigenvector. The cyclic state corresponding to the class number j 
will be denoted by IY*,(t)). Since SJf) is Hermitian in X 

((Psrp,I %J), = f + s p p , .  (2.12) 

Substituting (2.11) into (2.12) and using the definition (2.1) we obtain 

hr( f ) I Vq (1)) = 8,. (2.13) 

and 

W&) I*&)) = 4 7  

(V)pJf)l vc,,(t))= sj7e 

for any t s [ O ,  U .  The equation (2.13) together with (2.11) gives 
iNp-p')w, 

Thus it is shown that periodic functions which belong to different equivalence classes 
are orthogonal in the inner product of 9 while functions which belong to the same 
equivalence class are not. 

Consider the case where the set {IqJ} is complete in 2. Then the set [lYc(f))}  is 
complete in 9 at any f E [0, TI. In order to prove this we proceed as follows. Let us 
take l h ) ~  9. The vector function I h ( t ) ) =  Ih) belongs to X, therefore 

(2.14) 
1 '  

Ih)=C IqSjp(f))T Io (%<p(f')lh)dt'. 
j P  
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Substitution of (2.11) into (2.14) and integration gives 

Ih) =C lps,(~))(psj(t)l h). 
1 

This relation is equivalent to 

Ih) =C IYe,(f))We,(~) I h). 
I 

Therefore sets {lpe,(t))) and ([Vzj(t))}  are complete in 9. Note that in the set { Ipsj ( t ) ) }  
only one representative of each equivalence class of solutions of (2.9) is included. Let 
us take the value of a solution of the Schrodinger equation, /Y(t)) ,  at the moment t 
in place of Ih): 

lWt) )=  c IYSj(t))W&) IWt)) .  (2.15) 

The inner product of any two exact solutions of the Schrodinger equation does not 
depend on time [l]. Therefore the expansion coefficients in (2.15) do not depend on 
time, namely 

j 

W S j ( t )  I W t ) )  = (W,( to)  l W t 0 ) )  = aj 

for any t0c[O, TI. The expansion (2.15) may also be written in the form 

(2.16) 

The following expressions for the evolution operator of the system can be easily 
obtained from (2.15) and (2.16), 

Note that each cyclic state, taken at I = 0, is an eigenvector of the evolution operator 
WT, O ) ,  

U(T, O)IVe(O))  = P e P A O ) )  

where p. = exp(-ieT/ h )  is the corresponding eigenvalue. Any eigenvector of U(  T, 0) 
corresponds to some cyclic state of the system. In the case H (  T) = H(0)  the states 
lYe(0))=lp8(O)) are identical with the 'cyclic initial states' discussed by Moore and 
Stedman [lo] and by Moore [7,9]. 

of the Hamiltonian is an eigenvector of Sq(t) .  The equivalence classes of solutions of 
(2.9) may be generated by the solutions ( E j ,  IpE,)), where IpE,) is an eigenvector of 
Hamiltonian and E, is the associated eigenvalue. If IpEj) is chosen as a representative 
of the class j for each j then the expansion (2,lti) reads 

In the particular case of a time-independent Hamiltonian each eigenvector IpE,) 

IW0)=Cbjexp  - - E , ( t - t ~ )  /p4) b j = ( p ,  I'Wto)). 

This is the familiar expansion of a state of a closed system in stationary states of 
discrete spectrum. Thus the solutions of the form (2.4), which describe the stable 
behaviour of the system under a non-adiabatic perturbation, provide a natural extension 
of the notion of stationary states of a closed system. 

i ( I  1 
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For finite-dimensional systems the existence of the complete set of cyclic states is 
provided by Floquet theory [ 141, because in this case the Schrodinger equation in a 
finite interval [0, TI is equivalent to a system of ordinary linear differential equations 
with piecewise-continuous T-periodic coefficients (see the next section). 

For infinite-dimensional systems one cannot always expect solutions of (2.9) to 
belong to X In a number of cases the solutions of interest do not belong to 2, and 
it is useful to consider, instead of the Hilbert space 2, the rigged Hilbert space %= 2. 
The latter case take place when S, has a continuous spectrum. 

3. Cyclic states and quasi-energy states 

In this section the connection is established between the cyclic states of a system 
considered in the time interval [0, TI (system I )  and the quasi-energy states of a 
T-periodic system (system II), closely related to the first one. 

The Hamiltonian of the system 11, Hll(t), is defined as follows: Hl , ( t )  = Hl(r) for 
ts[O, T) ,  H , , ( t + T ) = H , , ( t )  for ~E(--oo,co), where H , ( t ) = H ( t )  is the Hamiltonian 
of the system I. The Schrodinger equation for the system I1 has piecewise-continuous 
T-periodic coefficients. 

Consider the problem of finding quasiperiodic solutions 

I PA f + 0) = 1 %  ( 0)  
of the Schrodinger equation with the Hamiltonian Hll( f + T) = Hll( 1) for all real 1. In 
the case of T-periodic systems the real parameter 8, which determines spectral charao 
teristics of the system, is called the quasi-energy [l, 51 and the state lTs(f)) is called 
the quasi-energy state. 

It is clear that any quasi-energy state ITa( I)) of the system I1 satisfies the condition 
(2.3). Therefore, it coincides with one of the cyclic states of the system I in the interval 
[0, TI. On the other hand, if the vector lqs(f)), corresponding to a cyclic state of the 
system I, is periodically extended for all real t, then [Y'.(t))=exp(-iet/h)Iqp,(t)), 
coincides with the wavefunction of one of the quasi-energy states of the system 11. 
Thus it is shown that the eigenvalue problem (2.9) for the Sp(t) is equivalent to the 
problem of finding quasi-energy states of the corresponding T-periodic system. In 
what follows the terms 'the quasi-energy state', and 'quasi-energy' will be used for the 
description of cyclic states of the system 1 as well as the system 11. 

The set {lqp.p(l)):lp,p(f))=e'P"'lg.)}, where {lg.)} is a basis of a, is a complete 
orthonormal set in 2. The matrix form of the equation (2.9) in this basis set of 2 is: 

(3.1) 

The matrix elements of H ( t )  in the basis {lpnp)), are equal to the definite Fourier 
coefficients of the matrix elements of H ( t )  in the hasis {Ig.(t))}, namely 

l k  1 (Hnp,ik + Pfiw&r&p),F$' = EjFLyd. 

HnP,r& =((qnplH(f)lq?lk)), =T e-'(P-kJ'"'H, " I  ( t )  d t =  H"-" "I jOT 
where H,,(t)=(g.(r)lH(t)lg,(t)). The expansion coefficients of the vector Ipp,,(t)) in 
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the basis {]a,( t ) ) }  are equal to the Fourier coefficients of (go(  t )  I q.,( t ) ) ,  namely, 
l T  

F:, = hP( t )  I c p , ( O ) ) ,  = T 1, e-iP"'(gn (0 I G, ( 0 )  dt. 

It is shown above that to any system, considered at a finite time interval [0, TI, there 
corresponds a system with T-periodic Hamiltonian, which may in general have discon- 
tinuities. The Fourier series for a function F ( t )  is convergent in the interval [0, TI and 
its sum is equal to ( F ( f + O ) + F ( t - 0 ) ) / 2  if it satisfies the Dirichlet conditions (see, 
for example, chapter VI  of [13]). One of the conditions is to have a finite number of 
discontinuities of the first kind. If the series is convergent in the interval [0, TI then 
it is convergent for all real t and its sum is T-periodic function. Therefore, if the 
difference H,,,( T ) - H , , , ( O )  is finite the Fourier series for the matrix element H , , , ( t )  
is convergent in the interval [0, TI. The sum of the series is equal to (HIl , , ( t+0)+ 
H l l n , r ( t - 0 ) ) / 2  for all real t. Consequently, the condition on H ( t ) ,  H ( T ) = H ( O )  can 
be relaxed to the requirement that HJ t) should have a finite number of discontinuities 
of the first kind in the interval [0, TI. 

Thus, the eigenvalue problem (2.9) is reduced to that (3 .1)  of an infinite matrix 
with constant coefficients. This matrix has certain regularity in its block structure for 
a suitable ordering of indices. For some systems the eigenvalue problem (3.1) may be 
reduced to that of a finite block [4,8]. 

The eigenvalue problem (2.9) for the case SJO) = S,( T )  was considered by Sambe 
[2 ]  and Okuniewicz [3]. The composite Hilbert space introduced in [ 2 ,  31 is identical 
with 2. The matrix form (3.1) of the problem was first considered by Shirley [4] for 
the case of finite-dimensional systems with T-periodic Hamiltonians. 

4. Berry phases 

In this section the language of the quasi-energy approach will be applied to the 
description of the Berry phases of a quantum-mechanical system. In order to do this 
we begin with the generalization of the Berry phase by Aharonov and Anandan [ 121. 
In this formulation the wavevector of the cyclic state IY( t ) )  is presented in the form 

ly(t)) = e"(')[?( t ) )  

where 

f(T) -fW = 4 
la(T))= IPP(0)). 

The phase 4 is expressed as a sum of two terms 4 = p + y, where 

is called the 'dynamical phase' and 

is the Berry or 'geometrical' phase. Note that the conditions (4.1) and (4.2) definef(f) 
and Ip( t ) )  up to the transformation 

f ( t ) + f ( t ) + d f )  I?(t))-tex~[-ig(t)ll(o(t)) 
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where g ( T )  = g(O),  and p is invariant under this transformation. Thus lY(l)) may be 
taken in the quasi-energy form (2.4). This form corresponds to the choice off(!) to 
be a linear function of time: 

J(t)=--EI/h.  

In the framework of the quasi-energy approach, the cyclic evolution is described by 
the quasi-energy state and represented by the ray of the Hilbert space %, while in 
terms of the Hilbert space 93 the cyclic evolution is considered as 'propagation of the 
state of the system along the closed curve in the projective Hilbert space 9 of rays of 

The phases y and P can be expressed in terms of the inner product of the Hilbert 
93' [12]. 

space % 

Thus, the Berry phases of the system differ only by the factor T from the corresponding 
diagonal elements of the matrix of the operator i(J/J!) in the basis {Irp.(f))} of the 
appropriate subspace of 2. Similarly, the dynamical phases differ only by the factor 
-T/h from the corresponding diagonal elements of the matrix of the Hamiltonian in 
the same basis. 

Note that the change of timescale, 

T = w f  where w = 2m/ T 

transforms the Hilbert space %into the space Xindependent of T [3]. The Schrodinger 
operator in 2' is given by 

J 
a7 

where H ' ( T ) - H ( T / u I ) .  Let us represent the Hamiltonian as a Fourier series 

S;(T, w )  = H'(T)  - ihw - (4.4) 

H (  2 )  = 2 H ( * )  e"'. 
k 

If we consider H as a function of the parameters {Hrk'}  and w, then H'(T) ,  represented 
as a Fourier series, does not depend explicitly on w :  

JH'({H'*'}, 7 )  - - 0. 
Jw 

Taking the partial derivative of (4.4) with respect to w we obtain: 

a &S$(T,W) 
8T aw 

-ih-= 

Now the Berry phase may be rewritten as 

where ( P : ( T ) -  (P,(!) and 

(4.5) 
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The eigenvalues and eigenvectors of S, depend on the parameters {H'"} and w. 
If the eigenvector lrpa(t)) of the discrete spectrum of S, is a single-valued function of 
w in some interval A, and the associated eigenvalue E is a differentiable function of 
w in this interval, we can apply the Hellman-Feynman theorem [2,lS] to obtain 

It follows from (4.6) and (4.7) that the Berry phase of the state lYe(f)) for any w E A 
is given by 

27r JE(o,  {H'k'})  p =-- 
= i i  a m  

Let us now examine the case where (4.8) is not applicable. Let the quasi-energies 
of some subset of quasi-energy states {]Yn(t))} satisfy the condition 

E. = eo+ k,hwo (4.9) 
where S, are integers, wo is a positive real number. For the frequency w = wo this subset 
is degenerate, because according to (2.10) all the quasi-energies of the states {[Yn(t))}  
may be chosen to be so. Any superposition of the corresponding quasi-energy states 

IWO)=Z a"Pn(t)) (4.10) 

is the quasi-energy state with the frequency wo and the quasi-energy so. Indeed, 

where each irpn(t)) is the T-periodic part of [ Y n ( f ) )  associated with the value of the 
quasi-energy c0,  and 

Irpo(t))=C a"lrp"(t)) (4.11) 

is the T-periodic part of IY(t)). The Berry phases of the states (4.10) with more than 
one non-zero a. cannot be found by means of (4.8), because these states are cyclic 
for the isolated value of w = wo only. Substitution of (4.1 1) into (4.3) gives an expression 
for the Berry phase of lY(t)): 

(4.12) 

5. The adiabatic approximation 

Let us now illustrate the above approach by the case of the adiabatic approximation. 
Let the initial state of the system be an eigenstate of H(0) .  If the Hamiltonian of the 
system is slowly altered, then, according to the adiabatic theorem, at any instant the 
system will be in an eigenstate of the instantaneous H( 1). If the Hamiltonian is returned 
to its original form, the system returns to its original state. The wavefunction in this 
case is [ 113 

. I  

I*(t))=exp(; 0 &(R(t')) df) exp(iP(t))ln(R)) (5.1) 
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where & ( R )  and In(R)) are the instant eigenvalues and eigenvectors ofthe Hamiltonian 
H ( R ) ,  R = R ( t )  is some parameter and R ( T )  = R(0). The wavefunction (5.1) satisfies 
the condition (2 .3) ,  and the corresponding + is given by 

4 = -1 h Ior E,(R(t')) dt'+ P (5.2) 

where C = { R (  t): 0 6 t 5 T }  is a closed curve in the parameter space. According to the 
results of sections 2 and 3 ,  the state (5.1) is a quasi-energy state and its quasi-energy 
for a given T is 

P = P ( C )  = i  IC (n(R)lV,ln(R))dR 

(5 .3)  

where R1(7)=R(r/w) and w = 2 r r / T .  It follows from (4.5) that aE,(R'(~))/aw =O. 
The first term in the right-hand side of (5.3) does not depend explicitly on the frequency 
w. The Berry phase P does not depend on the parametrization of the curve C and, 
consequently, does not depend on w. Thus, we can see that the expression (5.2) for 
the quasi-energy of the cyclic state in the adiabatic approximation is in agreement with 
the general formula (4.8). The expression (5.3) is the expansion of E(w,{H(~)})  in 
powers of w in the vicinity of w = 0, 

&(W, {H'"}) = E(0, { H ( 9 ) - &  hw. 
2m 

Thus, in the adiabatic approximation, E(W, {H'k'})  is a linear function of o. 
Let us now imagine two identical systems in the same initial state, which is an 

eigenstate of the Hamiltonian H(0) with an eigenvalue Eo. Let the Hamiltonians of 
these systems be slowly and independently altered in such a way that at t = T they 
return to their initial value H(O), and then remain time-independent. For any t T 
the wavefunctions of these systems will have the phase difference 

A+ = ( E ]  - E ~ ) T / * .  (5.4) 

Thus, for the fixed T, the difference between the phases of the wavefunctions acquired 
in the process of the adiabatic perturbation is proportional to  the difference between 
the quasi-energies of the states of the systems. 

Let us note that H ( 0 )  = H(T') for any T'> T. Therefore, any T'a T may be taken 
instead of T. Consequently, the phase difference A+ given by (5.4) should not depend 
on T'. To see this, let us consider 4' corresponding to T': 

1 
h 

I- +'=+ jo E.(R(t ' ) )  d t '+p  = + - - E o ( T ' -  T ) .  

The corresponding quasi-energy is given by 

4'fi T Eo(T'-T)  
T ' T '  T' ' 

&ti--= E - +  

The phase difference A+', according to (5.4), is 

A+'=(&:-&;)T'/h=A+. 
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6. The two-level system 

In this section we will illustrate the general approach developed above by the example 
of the two-level system. For simplicity we consider the rotatingwave approximation. 
The Hamiltonian of the system is given by 

The solutions of the Schrodinger equation with the Hamiltonian (6.1) are well known 
(see, for example, Landau and Lifshitz 1151, problem at the end of section 40).  There 
exist two linearly independent quasi-energy solutions: 

lv2(0)= e w  -- e2t 140). 
(6.2) 

E I  = E l -  h ( a - A w ) / Z  EZ+ h(Cl-Aw)/2 (6.3) 

( i  ) Iyl(t))=exp - - e l f  I d t ) )  ( t  1 
The quasi-energies of the states IY,(t)) and Iq2(E)) are given by 

and the corresponding T-periodic functions in the basis 

axe 

where 

b:, = -e-''b,z b2, = e"b,, Aw = w o - w  

and 

It is an interesting fact that 

= hw + fin. 
Hence the frequency w +Cl is a resonance frequency of the system. 

we have 
Let us now consider the limit case F+O ( w  is kept constant). For small enough q 

C l =  IAwl(1 +21712/(Aw)'). 

The limit values of the quasi-energies (6.3) and o f  the T-periodic functions (6.4) depend 
on the sign of Aw. 

If Aw> 0, 

& I  + Ei si + E2 

ldf))+l1) Iv2(t)) + e"l2). 
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I f A w C O ,  

E ,  + E l -  ho c2+ E,+hw 

Iql(t))+. -e+'e"12) I d  0) +. e"'l1). 
Thus, we have shown that the quasi-energy states lYl(t)) and IY2(t)) tend to the 
stationary states of the system if F+O. At first glance it may seem strange that in  the 
case Aw < O  the quasi-energies do not tend to the energies of the unperturbed states. 
This is due to the fact that the quasi-energy and the T-periodic part of the wavefunction 
of a quasi-energy state are defined up to the transformation (2.10). 

Let us now consider the Berry phases of the states (6.2). For FfO the functions 
(6.4) are continuous functions of o, and the quasi-energies (6.3) are differentiable 
functionsof w.Tnerefore,the BerryphasesofthestatesiY,(t)), IY2(t))canbecalculated 
by means of (4.8): 

P , = w ( l - A o / C l )  P 2 =  - P I .  (6.5) 
The quasi-energies (6.3) and the T-periodic functions (6.4) can be neatly expressed 

in terms of the Berry phases: 

where 

Thus, it has been shown that the shift (with respect to the case F =0) of a quasi-energy 
of a two-level system caused by a non-adiabatic periodic perturbation is proportional 
to the Berry phase of the corresponding quasi-energy state. Since the quasi-energies 
determine the spectral characteristics of the system, this shift can be measured. 

Consider now the case of resonance where 

E 2 -  El = Ihw 

for some integer 1. The multiphoton resonance frequencies of the system, U,, can be 
found from the equation 

(6.6) 
the equation (6.6) has no solutions if FZO, the system has no 
exact one-photon resonance 

ho, + h a  = lfiw,. 

I =  1 

--oo+Jo;( 1 - 1)2+ 417I2i( 1 - 2) 
1>2  * o,= 

i ( 1 - 2 )  

0 0  21# 
I on(l-l)' 

U,=-+ 
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At the frequency of the external field w = w, the quasi-energy states (6.2) are degenerate. 
Let us equalize the quasi-energies of both states in the following way: 

E ;  = El 

IrpKt))= Idf)) I d ( t ) ) =  e-"%2(t)). (6.7) 
The Berry phase of a normalized mixed quasi-energy state a l ~ Y l ( t ) ) + a 2 ~ Y 2 ( t ) )  can be 
obtained from (4.12). Substitution of (6.4) into (6.7) and direct calculation shows that 

E :  = E2 - fhwo= El 

The corresponding T-periodic functions are 

G~:Ii(a/Jt)IipXt)))~ = O  

6 = l a l l Z p l + l a z l z ( p z + 2 a ~ ) .  

which gives 

In the case where F = 0 and wo 
state is given by 

w,  p1 = p2 = 0. The Berry phase of a mixed cyclic 

p = 2dla21 (6.8) 
in agreement with (8.4).  

Finally, we note that the Berry phases of non-adiabatic two-level systems were 
considered previously by Moore [9], who employed the Floquet Hamiltonian method 
[ 4 ]  for finding cyclic states. The expressions for the Berry phases (6.5) are equivalent 
to that obtained in [9]. However, the case of resonance, where all states are cyclic, 
was not considered in [9]. 

I. The forced harmonic oscillator 

In this section the general approach developed above will be applied to the forced 
harmonic oscillator. The Hamiltonian in this case is given by 

H ( t ) = ~ ( p Z + 0 ~ x Z ) - - f ( t ) x  

where x and p are the coordinate and momentum operators, wo is the resonance 
frequency of the oscillator ( h  = m = 1 in this section). It was shown by Popov and 
Perelomov [16,17] that the quasi-energy states of an harmonic oscillator subjected to 
an action of a T-periodic force can be expressed in terms of a periodic solution of the 
classical equation of motion 

i ( t ) + w & 7 ( 0  = f ( t )  (7.1) 
and the stationary states {ln(wo, t))) of the force-free oscillator: 

I n ( o o ,  I ) ) =  e-iEn'ln(wo)) E. = (n +f)wo 

where H.(x )  is a Hermite polynomial. If w o #  lo, where l is an integer, the equation 
(7.1) has a unique periodic solution given by 
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where {f'*'} are the Fourier coe5cients off(t). Sincef(t) is real,f'k'=f''k'*. In the 
case oo# lo there exists a set of quasi-energy solutions {(x[Yn(t))}  of the SchrBdinger 
equation [16, 171: 

x e'"+ - 7 ( t )  I n ( o o ,  1)) 

where 

& = -$ i (o )? (o )  
and ? ( I )  is given by (7.2). The quasi-energy E .  of the state lTn(t)) is 

E,  = E. + A &  
(7.3) 

If ( k ) 1 2  l f ( 0 ) 1 2  CO 

A &  = -- i T l o r f ( t ) v ( t ) d l = - y +  1 2 .  20,  ~ = l k o  - W O  

It is not difficult to verify that the set {IY.(r))} can be obtained by a unitary 
transformation of the set { l n ( o , ,  t ) ) } ,  namely 

IY "( t ) )  = e"~'"D( a,( t ) ) ln  ( oo, t ) )  (7.4) 
where 

D ( n )  = exp(na+- n*a) is the displacement operator and 

Thus if w o #  lo, where f is an integer, the set [lVn(t))} is complete in 9 at any moment 
of time. 

If oo= lo for some integer I the equation (7.1) has periodic solutions if, and only 
if, f"' =O. If  wo = lo and f"'= 0 for some I any solution of the classical equation is 
periodic. The set {lY,,(t))} given by the particular solution (7.2) is complete. The 
quasi-energy states lYn( I ) )  are degenerate, because, according to (2.10), all the quasi- 
energies E ;  may be chosen to be the same: 

E ; =  E. -n lw  = E,. 

Any superposition of the states IY,,(t)) is a quasi-energy state with the quasi-energy 
E,,. In the case of resonance, where wo= fo, the classical equation (7.1) has periodic 
solutions and the Schrodinger equation has bound solutions if, and only if, f"" = 0. 

Let us consider an oscillator subjected to the action of an arbitrary force f( t )  for 
Os te T. Iff( T )  Z f ( 0 )  the periodic extension off(l) has discontinuities in the points 
kT where k is an integer. Nevertheless any solution c( t )  of the classical equation (7.1) 
has a continuous derivative. The continuity of c ( t ) ,  and t ( t )  can be easily verified if 
one takes into account that any solution c( t ) ,  including the periodic solution q ( f ) ,  
can be presented in the form: 

1 
( ( t ) = -  (e'-O'd*(r)+e-'"O'd(t)) d2-G (7.5) 
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where 

d( t )  = d(O)+- I'ei"o'f(r) d r  
G O  

and d(0) is a constant. Consequently if the classical equation (7.1) has the periodic 
solution ~ ( t )  then functions {IVJt))} and the corresponding periodic functions 

Irp,(t))= eif*'lVm(t)) I%(n)=l%m 
are continuous functions of time. Thus, apart from the case where wo = iw and f ( I )  # 0 
for some I ,  an oscillator subjected to an action of an arbitrary force f( t )  for 0 < t < T 
has a complete set of quasi-energy states given by (7.4). 

Note that the transformation 

eiBJ"D(a,(t)) (7.6) 
belongs to a representation of the Heisenberg-Weyl group W, [6]. It follows from 
(7.4) that the quasi-energy state 

w = e-iE.f 

lVn(tD= Wln(wo)) 

is a generalized coherent state with the starting vector ln(wo)) (see section 1.2 in [6] ) .  
Since the displacement operator D ( a )  preserves the dispersions Ap and Aq the 
uncertainty relation for the state / V a ( t ) )  is 

A p A q = n + f .  

In particular, the ground quasi-energy state /Vo(t)) is a standard coherent state. 
Now we can see that if a force-free harmonic oscillator is in the generalized 

coherent state with the starting vector In(wo)) and the amplitude a,(O) at t < O ,  
and a non-adiabatic external perturbation, such that if o ,= iw  then f '"=O, is 
applied on [0, TI, then the state of the system on this interval is the quasi-energy state 
lYn(t)). For t >  T the oscillator is in the generalized coherent state with the 
amplitude a,(O) e-imo'L-T). Let us imagine another oscillator identical with the first 
one in the same initial state with no perturbation applied on [0, TI. For 1 > T the state 
of the second oscillator will have the amplitude a,,(O) e-'"O'. Therefore the states of 
the oscillators will be the same for t > T only in the case of resonance, w,, = lo, f ( I )  = 0. 
In this case for any t 3 T the wavefunctions of the systems will have the phase difference 

A + = A E T  (7.7) 

where A& is given by (7.3). On the other hand in the case of resonance any state of 
the perturbed harmonic oscillator is cyclic as well as any state of a force-free oscillator 
being cyclic with the frequency wo (see section 9). Thus if we take two identical 
oscillators in the same states at t <O, one of them subjected to an extemal perturbation 
on [0, TI such that wo= lo, f c r ) = O ,  the states of the oscillators will be the same for 
t >  T and the phase difference of the wavefunctions, A+, will be given by (7.7). Note 
that A+ does not depend on the initial state. 

Let us now calculate the Berry phases for the cyclic states of the forced oscillator. 
In the case oo# lw, where I is an integer, all the cyclic states are given by (7.4). The 
Berry phases of these states can be obtained from (4.8) and (7.3) 
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The Berry phase Po can also be expressed in terms of the periodic solution ~ ( t )  of 
the classical equation 

Po=- q(t)ij(t)dt. loT 
If wo= h , f ' " = O  for some integer 1 the quasi-energy states IYu.(t)) are degenerate, 
namely 

lYv(t)) = e-ieo'Iq!,(t)) 

Iq;(t))= e-i"'wt IV"(t)). 
Any superposition of the states lqn ( t ) )  is a quasi-energy state with the quasi-energy 
E ~ .  The Berry phases of mixed states cannot be found by means of (4.8), because these 
states are cyclic for the isolated value of w = w o / /  only. The Berry phases of mixed 
states will be obtained from (4.12). The diagonal matrix elements of the operator 
i(a/dt) are given by 

Let us consider non-diagonal matrix elements of i(a/af). It is not difficult to see that 
for m f n 

Taking the derivative of the displacement operator we obtain 

where 
A = &.,at - &:Q (7.11) 

Substitution of (7.10) and (7.11) into (7.9) gives for m # n 

Let us show that the matrix element (7.12) equals zero. In order to do this consider 
the matrix elements of A in the basis {ln(wo))} of B. 

(m(wo)lAln(wo))= &,m -&:&6,,.-, (7.13) 
and the Fourier series for an, 

(7.14) 

The subsequent substitutions of (7.13) and (7.14) into (7.12) give the matrix element 
(7.12) as a sum of terms containing factors of the type: 

f ' h )  loT e*ilwt d 1. (7.15) 

If k = * 1, (7.15) equals zero, because f(*" = 0. If k # ;t 1, the expression (7.15) equals 
zero, because the integral equals zero. Therefore, 

(7.16) 
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Substitution of (7.8) and (7.16) into (4.12) gives the Berry phase of an arbitrary state 
of a forced oscillator in the case of resonance, wa = lo, f (" = 0, 

~ = ~ o + 2 . i r l ~ n l a . l z .  (7.17) 

The first term in the right-hand side of (7.17) is due to the dependence of the 
quasi-energy on the frequency of the external perturbation. The second term is due to 
the degeneracy of the quasi-energy in the case of resonance. 

It is well known that if the initial state of a forced oscillator is a coherent state 
then this state will be coherent at any time t >O. Let us obtain the Berry phase of a 
standard coherent state lYa(t)) with the initial amplitude a, 

IP" = D(.)IO(wa)). (7.18) 

n 

Substituting 

W a )  = D(a,(O))D(n,) exp{i Im(a,a:(O))l 

aq=LY-a1(O) 

where 

into (7.18) and taking (7.4) into account we obtain the expansion of the state lYm(0)) 
in quasi-energy states { l Y " ( O ) ) } ,  

(7.19) 

where S=aqa: (O) -~ , .  
The quantity a, can be interpreted as the amplitude of the coherent state IYIln(t)) 

in the quasi-energy states basis. Indeed, the expansion coefficients of any solution of 
the Schrodinger equation in the quasi-energy states basis do not depend on time, 
consequently the expansion coe5cients of lYm(t)))  in { /Yn(t))}  can be obtained from 
(7.19) 

a,=eZ6exp ( -- la;l2)% (7.20) 

and we have 

This expansion is similar to the expansion of a standard coherent state of a force-free 
oscillator in the stationary states basis { ln (wo ,  t ) ) ) .  

Substitution of (7.20) into (7.17) gives the Berry phase of a standard coherent state 
in the case of resonance 

pa =Po+2?r1ln,12. (7.21) 

Note that the Berry phases of standard coherent states in the particular case of 
resonance, where 1 = 1, were considered previously by Moore [7]. The equation (7.21) 
is different from Moore's equation (52) because in Moore the Berry phase of a standard 
coherent state is expressed in terms of its time-dependent amplitude z( I )  relevant to 
the basis {In(wo))},  while in this paper the Berry phase of a standard coherent state is 
expressed in terms of its time-independent amplitude a, relevant to the quasi-energy 
states basis {lYn(t))}. 
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8. The time-independent Hamiltonian 

A time-independent Hamiltonian is a particular case of a T-periodic Hamiltonian with 
an arbitrary period T. Let the Hamiltonian have a discrete spectrum. The equivalence 
classes of solutions of (2.9) can be generated by the solutions (€,, where Ip4) 
is an eigenvector of Hamiltonian and E, is the associated eigenvalue. The Berry phases 
ofstationary states I'Pj) = exp[-i€,(t)/h]lrpE,) are trivial, p = 2 d ,  where k isan integer. 

Let us note now, that even in the case of a closed system, for some values of the 
frequency w there are quasi-energy states which are not eigenstates of the Hamiltonian. 
The Berry phases of these states are non-trivial in general. In order to show this, let 
us consider the case where the energies {E,,} of a subset of the stationary states, 
{ lYn(t))} ,  of a closed system are given by 

E. =Eo+ %hwo (8.1) 

where k. are integers, wo and Eo are real numbers, oo>O. The condition (8 .1)  is a 
particular case of the condition (4.9). Clearly, any two energy levels E, < E, of any 
system satisfy this condition when Eo = E,, k, = 0, k, = 1, and wo is equal to the resonance 
frequency of the system U,, =(E,  - €j)/ h. For some systems all the energy levels satisfy 
the condition (8.1), e.g. harmonic oscillators, spin-j particles in an homogeneous 
magnetic field. 

Taking (8.1) into account l ' P n ( t ) )  can be written down as 

I*.iZ))=exp( - ; ~ f ) ~ a ~ f ) )  la,( 1)) = exp(-ikfl0t)l PE.) 

where Irp.(t)) is a periodic function with the period To = 2?r/w0. An arbitrary superposi- 
tion of the quasi-energy states from the subset { l 'Pn(f ) )} ,  

I*(t))=exp( - j . ~ )  z anlvn(t)) (8.2) 

is also a quasi-energy state with the quasi-energy Eo. On the other hand, if more than 
one a. differs from zero, then IY(t)) is not a stationary state. 

It is easy to prove that the converse is also true, namely, if some non-stationary 
state IG(t))  of a closed system is cyclic, i.e. IG(O))=eiQeIG(TZ)), then a subset of the 
energy levels satisfies the condition (8.1). Thus, we have obtained a criterion ofexistence 
of non-stationary cyclic states of a closed system. 

The Berry phase of a non-stationary cyclic state can be obtained from the general 
expression (4.12). Substitution of 

into (4.12) gives 

If only one of the coefficients a. in (8.2) is not zero, then IY(t)) is a stationary 
state. We can see from (8.3) that in this case p = Znk,, i.e. it is trivial. For the case of 
two energy levels E, <E,, considered above, the Berry phase is given by 

p=2+,1* (8.4) 
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in agreement with (6.8). The expression (8.4) identical with the result obtained by 
Moore ([7], equation 8) for a time-independent two-level system. Formula (8.4) 
reproduces the result of Aharonov and Anandan [12] for the case of a spin-; particle 
in an homogeneous magnetic field. 

Let us now turn our attention to a force-free harmonic oscillator. Its energy levels 
are given by the formula (8.1) with Eo = h o d 2  and k,, = 1, where oo is its resonance 
frequency. All its states are cyclic, with the frequency wo. Let us derive an expression 
for the Berry phase of the coherent state with the initial amplitude a. Its expansion 
coefficients a. are given by 

a,=exp -- -- ( ?*)2 
The Berry phase of the coherent state la) is 

pa = 27rlal2. 

This expression can also be obtained from (7.21) if we take into account that, for a 
force-free oscillator, po = 0 and av (0) = 0. 

In conclusion let us discuss localized states of an electron in the crystal: 

a N ( r - r p ,  t ) = P - ' / 2 C  exp(-iK. rp)  exp( - b Z N ( K ) t ) ' P K N ( r )  1 (8.5) 
K h 

where N is a band index, K is a wavevector, P is the number of cells, rp is a lattice 
point, ' P K N ( r )  is a Bloch function. The functions a N ( r - r p ,  t )  possess some useful 
properties. Firstly, they are solutions of the Schrodinger equation. Secondly, they have 
the Wannier functions as the initial conditions, hence we will call them the Wannier 
states. Thirdly, they form a complete orthonormal set at any moment of time, 
( a N ( r - r p ,  t ) laN,(r -rp , ,  t ) ) , =  fiN.N8pp.p. Fourthly, Wannier states of the parabolic band 
of a cubic crystal are quasi-energy states. For simplicity we will demonstrate the last 
property in the one-dimensional case. The energies in this case are given by 

where mN is an effective mass, a is the size of a cell, n is an integer. The energy levels 
(8.6) satisfy the condition (8.1) with the parameters 

Therefore, the Wannier states (8.5) of the band N are cyclic states, corresponding to 
the degenerate eigenvalue of the Schrodinger operator EN(0) .  They all have the same 
mean energy and the same Berry phases: 

p -? (2P'+ 1+3(-1)'). 
N-12 

9. Summary 

The results of this paper lead to the conclusion that an adequate description of cyclic 
states of a quantum-mechanical system can be provided in terms of eigenvalues and 
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eigenvectors of the Schrodinger operator S,, rather than of the Hamiltonian. The fact 
that even in the adiabatic case there exists a non-trivial Berry phase which does not 
depend on the timescale of the perturbation is a strong argument for this conclusion. 
All the cyclic states of a system, including stationary states, are determined by the 
eigenvalues and associated eigenvectors of S,. The notion of a quasi-energy state was 
introduced as an extension of the notion of a stationary state for the case of systems 
under periodic perturbations, where stationary states do not exist. However, even in 
the case of a system with a time-independent Hamiltonian, there exist quasi-energy 
states that are not eigenstates of the Hamiltonian. The Berry phases of such states are, 
in general, non-trivial. 

There are two types of quasi-energy states related to the discrete spectrum of S,,. 
The wavefunctions of the states of the first type are single-valued functions of the 
frequency of the external perturbation w in some intervals. These states have non-trivial 
Berry phases only for systems with time-dependent Hamiltonians. The wavefunctions 
of the states of the second type are cyclic only for some isolated values of the parameter 
w, related to the resonance frequencies of the system. These states have non-trivial 
Berry phases both time-independent and time-dependent Hamiltonians. A 'classical' 
example of such a state is a coherent state of an harmonic oscillator. 

Acknowledgments 

I am grateful to the New Zealand University Grants Committee for the award of a 
Postgraduate Scholarship. I also would like to express my appreciation to Professor 
J Lekner for useful comments. 

References 

[l] Zel'dovich Ya M 1967 Sou. Phys-JETP 24 1006 
121 Sambe U 1973 Phys. Rev. A 7 2203 
[3] Okuniewicz J M 1974 J. Math. Phys. 15 1587 
[4] Shirley J H 1965 Phys. Reo. 138 8979 
[5] Ritus V I 1967 Son Phys.-JETP 24 1041 
[6] Perelomov A 1986 Generalized Coherent States and Their Applications (Berlin: Springer) 
[7] Moore D J 1990 J.  Phys A: Moth. Gen. 23 5523 
[SI Layton E, Huang Y and Chu S I 1990 Phys. Rev. A 41 42 
[9] Moore D J 1990 1. Phys. A :  Marh. Gen. 23 U 6 5  

[lo] Moore D J and Stedman C E 1990 I. Phys. A:  Marh. Gen. 23 2049 
[ l l]  Berry M V 1984 Roc. R Sor A 392 45 
[12] Ahamnov Y and Anandan J 1987 Phys. Rev. Lerr. 58 1593 
[13] Smimov V I 1964 A Colrrse of Higher Mathematics "01 I1 (Oxford: Pergamon Press) 
[I41 Eastham M S P 1973 nte Spectral Theory 01 Periodic Diferenriol Equotions (Edinburgh: Scottish 

[I51 Landau L D and Lifshitz E M 1958 Quantum Mechanics, Non.Relatiuisric Theory (Reading, MA: 

[16] Popov V S and Perelomov A M 1970 Sou. PhysdETP 30 910 
[17] Bar' A I, Zel'dovich Ya M and Perelomov A M 1971 Scattering, Reactions and Decays in Non-Relatiuistic 

Mechanics (Moscow: Nauka) 2nd edn (in Russian) 
[IS] Feynman R P 1939 Phys. Rev. 56 340 

Academic Press) 

Addison. Wesley) 


